The planet Mercury orbits the Sun once every 88 days. It takes the space station 90 minutes to go around the Earth. But the award for the speediest orbit goes to two stars in the constellation Cancer the Crab, which whirl around each other once every 5.4 minutes at a speed of 400 miles per second (1.5 million mph).
A team of astronomers led by Gijs Roefols of the Harvard-Smithsonian Center for Astrophysics recently examined this pair of stars known to astronomers as RX J0806.3+1527 or, HM Cancri. The two stars are both white dwarfs—the hot cores of dead, sun-like stars. They squeeze as much mass as half our Sun into a globe the size of the Earth. A teaspoon of white dwarf material would weigh about five tons.
This artist’s video depicts a pair of white dwarf stars known as HM Cancri, swirling closer together, traveling in excess of a million miles per hour. As their orbit gets smaller and smaller, leading up to a merger, the system should release more and more energy in gravitational waves. This pair of stars might have the smallest orbit of any known binary system. They complete an orbit in 321.5 seconds–just over five minutes.
(Credit: GSFC/D.Berry)
Scientists knew HM Cancri’s brightness varied on a five-minute timescale, but debated whether that variation was due to a tight orbit or other causes. In-depth studies were difficult because HM Cancri is very faint: about a million times fainter than what can be seen with the unaided eye. The team used the giant 30-foot Keck I telescope in Hawaii to gather enough light to confirm that the varying brightness was due to the speedy orbit of these two stars.
The stars move quickly because they are very close to each other, separated by only about one-fourth the distance from the Earth to the Moon. As a result, they share strong gravitational forces. They were once farther apart but have spiraled closer together over time. Billions of years from now, they will crash together and merge.
The stars drag together because they are gradually losing energy. Einstein’s General Theory of Relativity predicts that they are emitting gravitational waves, or ripples in the fabric of space-time. Those ripples carry energy away from the system, as shown in the artist’s conception accompanying this articles.
Future observatories like the proposed Laser Interferometer Space Antenna should somedy be able to detect gravitational waves coming from HM Cancri.